

Using an FPGA to Accelerate Iris Recognition

Safaa S Omran
1
, Aqeel Al-Hilali

1

1
 College of Elec. & Electronic engineering Techniques

Abstract: :Iris recognition becomes one of the most accurate and secures biometric method used today. The

execution time of the iris recognition algorithm on general purpose sequential system as central processing unit

is too high, so it cannot work in the real time applications. In this paper, an enhancement for the iris recognition

system was applied for each processing part to speed up the execution time and make the opportunity to work in

real time applications.

 Two enhancements were made in this paper, the first one by using hardware implementation for all the iris

recognition process which are: Segmentation, Normalization, Feature extraction, and Hamming distance using

the FPGA. The second enhancement is by choosing a small part (quarter) from the iris region which contains

sufficient features to make the recognition, hence reducing the processing time.

Keywords: Iris recognition, Ridge Energy Direction, Hamming Distance, Segmentation, normalization, Circle

Hough Transformer, Bresenham Circle Algorithm.

1. Introduction

Iris recognition is one of the most accurate and high confidence for authentication methods that used today.

The features inside the iris are unique from person to person, unchanged and cannot be manipulated with years

therefore it was more accepted in our world for distinguished between users than an others biometric system.

Recent years researchers were tried to develop a new algorithm for making the iris recognition system works in

the real time applications. However making iris recognition in real time is quite a challenge especially iris

recognition needs huge image processing and resources. Therefore, the researchers have tried to create iris

recognition system with low-cost and works in real time applications. This was impossible to achieve in the past

years with the sequential processor, but this become possible with advancement parallel processor like Field

Programmable Gate Array (FPGA) technology. The goal of this research is to use high-performance FPGA

technology to implement iris recognition in the parallel structure to get powerful and efficient for the iris

recognition system.

2. Iris recognition system

 Iris recognition system consist of five main stages: image captured, segmentation, normalization, features

extraction, and matching. The first step of the iris recognition is acquisition image of eye with higher quality and

clarity to avoid the process of removing noise from the captured image. This needs simple camera and stationary

image of the users. Once the image acquisition various preprocessing steps will be performed on it. The

prepressing includes segmentation (extracting the iris from the captured image), normalization (polar to

rectangular conversion) and then template and mask generation by applying the RED [1] algorithm to the

rectangular template. Then the template is matched with the database using hamming distance equation and the

match identification is displayed. The flow of process is shown Figure 1. The CASIA V1 is used to capture the

image.

ISBN 978-93-84422-37-0

2015 International Conference on Advances in Software, Control and Mechanical Engineering

(ICSCME'2015)

Antalya (Turkey) Sept. 7-8, 2015 pp. 1-8

http://dx.doi.org/10.17758/UR.U0915119 55

2. The Iris area

The numbers of pixels in the iris area are (90*480=43200) pixels. All researchers were applied their

different methods for iris recognition on that iris area. Some researchers, used only the lower half part of the iris

area in order to reduce the noise which comes from the eye lashes and eye brows, and to reduce the working

time, since in this case half of the iris area will be taken [2] (90*240=21600). Other researchers used a small ring

from the iris area (30*480=14400) pixels for iris recognition and a more reduction in the processing time they

got [3].In previous paper we used only the half part of the ring from the iris area with size of (45*240=10800)

pixels [4]. In this paper, all the hardware will be implemented only to the lower circular part of the iris area

which is shown in fig.2.

Fig. 1: Quarter iris region that used in implement process

3. Implementation of FPGA

Field Programmable Gate Arrays (FPGAs) are inherently parallel structures, have large number of registers

and embedded memory blocks, and high-speed memory and storage interfaces have provided a suitable solution

to facilitate a complete system-on-chip design. FPGA are reconfigurable after programmed with a specific

design. FPGA allows the designer to create a design with parallel function and model, simulate and editing that

design without costly of going to manufactured and adding a new circuit to the design every time change

something in the design. VHDL (Very high Hardware Description Language) which is a common language that

used to programmed FPGA. VHDL statements are essentially parallel, not sequential. VHDL permit to the

programmer facilities to dictate the type of hardware that is integrated on an FPGA.

4. Segmentation

Segmentation is the process of extraction iris from the captured image. The segmentation process consist of

two main tasks which they are edges detector to detect the iris and pupil boundary and Circle Hough

Transformer (CHT) to find iris and pupil parameter that will mark their locations in the captured image [5]. The

first stage of the segmentation is detection of edges of pupil and iris. Many algorithms have been used to detect

edges. In this paper the canny edge algorithm was chosen over various edge algorithms to detect the iris and

pupil edges. The canny edge algorithm was chosen over various edges algorithm to detect the iris and pupil

boundary. The canny edge detection consist of five main process, Gaussian smoothing process, Sobel gradient

calculation process, non-maximum suppression process, double threshold process and hysteresis process, as

Image Segmentation Normalization
RED

algorithm

Template

mask

Decision Matching

Database

Fig.1: Iris recognition system

http://dx.doi.org/10.17758/UR.U0915119 56

shown in figure 3. [6] Gaussian smoothing process is filtering the captured image by mask to create an image

with low noise. 5*5 Gaussian filters mask was chosen in our designed that will implemented in FPGA.

Therefore, Gaussian filters needs 25 pixels involved from the captured image to calculate the value of single

pixel in the captured image. Therefore, to calculate the value of one-pixel in captured image by applying

Gaussian filter requires going 25 times to memory to load 25 data value that involved in finding the value of that

pixel. Since it loads 25 data from the memory, so it’s requires 25 clock cycles in sequential process only to find

value of single pixel. This is huge time consumed if we have image with size 320*280 so it will required

2240000 clocks to perform the 25 Gaussian smoothing filter process on the captured image in sequential

process. To parallel Gaussian-smoothing process in FPGA, this will done by design the memory in parallel

structure that can load the entire involved pixel from the captured image only in single cycle. Therefore this

designed faster the operation of performing Gaussian smoothing process 25 times than the sequential process.

The next step in the design of canny edge is Sobel gradient calculation process. Sobel gradient calculation

process is the operation of detection the direction and strength of possible edge pixel. Sobel gradient consist of

two filter one estimate the gradient in x-axis and the other estimate the gradient in y-axis. Sobel gradient requires

9 pixel to involve to find possible edge pixel In each direction. This mean it is requires 18 pixel to involve to

find possible edge pixel in each direction (x-axis and y-axis). Also same parallel memory structure designed and

implemented in FPGA to detection the gradient direction only in single clocks. Both gradient (x-axis and y-axis)

are calculated in parallel structure as well. The parallel memory in Sobel gradient, loads 9 data in single clock.

The direction of the gradient is determined by using the fixed point arithmetic unit and by designed

multiplication with shifts and addition/subtraction to increase speed. Then results are stored in a memory to be

used as an input for the next stage. The third process of the canny edge is non-maximum suppression. Non-

maximum suppression process is used to minimize the edge thickness to improve localization. The Non-

Maximum Suppression also needs an 8-pixel to be involved to determine each pixel's value. Therefore, 16-pixel

are determined simultaneously by using special design in FPGA. The four process in the canny edge is Double

threshold process. This process is required only comparator non memory required. The process is executed by

multiplies comparator. The data that result from the process consist of 2 bits for single pixel to represent three

different values in the memory. The last process is hysteresis. Hysteresis process is comparing the pixels that

results from Double threshold process based on two threshold Thigh and Tlow .

The next stage in the iris segmentation is parallelized circle search, the CHT is the method used to detect
uncompleted circles. CHT is used to find circle parameter that defines the location of the iris and pupil in the
image captured. CHT is then applied to select the best-fit circle to mark iris boundary location. CHT consist of
two stages, the first stage is used to generate circle point, Bresenham Circle Algorithm (BCA) is used for that
purpose and second stage is to find the best-fit circle that describes the iris and pupil boundaries via value of
maximum accumulator [7].

BCA is used generate address of the circle point in the canny edge’s image. For each edge pixel in the edge
image, a circle is generated with a predetermined centered and radius at that edge pixel. Bresenham algorithm
are generated the coordinates label (xp,yp) of the circle points. BCA consist of five variable, x, y, r, z and iz.
Depending on these variable (xp,yp) of the next point will be determined. The q , z and iz are condition that
controls the movement of x and y. depending on these conditions the x or y will be move one step in x-axis or in
y-axis or in both axis’s. 8 circle point will generate every time BCA generate single (xp,yp) point, due to the fact
of circle’s symmetry, the (xp,yp) of the other point will simple computed by simple process unit. Calculate
one (xp,yp) coordinate, the other 7 coordinate will generate by relocating the x and y point and negative their
values. After generating the address of 8 coordinate points, these points will be the input value to the parallel
accumulator. The accumulator will parallel summation eight value of address that feed form BCA with the
variable that contains the value of the previously summation (variable will initially zero every time new circle
generating). Once the BCA generate all the address point of the circle, the accumulator will summation all value

Gaussian

Smoothing

Sobel

Gradient

calculation

Non

Maximum

Suppression

Double

Thresholding

Hysterisis

Resize image

captured to

quarter

Fig. 2: Canny edge system

http://dx.doi.org/10.17758/UR.U0915119 57

in that circle and store the results in the register to be compared with accumulator of the next circle. The next
circle point will generated by changing the value of either the x or y or both or changing the radii. Figure 4
illustrates the architecture of the BCA & CHT.

5. Normalization

 The normalization process is a way to converting segmented iris from its polar coordinate form to rectangle

coordinate form. This section will focus on designed and implemented polar to rectangle converting in FPGA.

BCA was chosen to be designed and implemented in FPGA over the other algorithms. Once the segmentation

process is completed. It’s generating 4 parameters, which they are the center point of the iris and pupil and the

radius of the iris and pupil. The result of segmentation will be inputted to the BCA. As stated previously, BCA

needs three input which they the x and y point and r that will get these inputted from the segmentation process.

The BCA consist of 4 main processes. These processes are the registers which store the parameters value that

results from the segmentation process. The second process is the controller which control the address generation

of (xp,yp) based on three conditions. These three conditions will select the address of the desired pixel in the

captured image. The three conditions selected the address of the desired pixel by increasing or decreasing one

step in x point or y point or both point. Once the three condition calculated the address of pixel is read from the

captured image and copy to iris rectangle template. Once complete calculated the addresses of all pixels in first

circle and stored in iris rectangle template, the next circle will generate by increasing the radius by one and same

process will applied as the first circle. The radius will keep increasing until it reaches the radius value of iris

boundary. the number of selected desired pixel will be different form circle to circle basing on value of the

radius, the higher the value of the radius the higher the number of selected pixel in circle and vice versa.

Therefore, BCA generate unequal rectangle template as shown in figure 5a.

REG

x

x0

y0

x1

y1

x7

y7

y6

x6

y5

x5

x4

y3

x3

x2

y2

Parallel

accumulator

Memory

y
r

Controller

Address

generation

R
E
G

R
E
G

ADD

Sub

ADD

SUB

ADD

Sub

ADD

SUB

R
E
G

R
E
G

y4

xp

yp

x

y

Fig. 3: Architecture of Circle Hough Transformer using BCA in FPGA

http://dx.doi.org/10.17758/UR.U0915119 58

Scale process is use to equal the iris rectangle template that has been generated from BCA. BCA generate
known number of pixel for each circle depending on the value of radius. This will help in scaling process since
the number of pixel is constant for each radius this can yield constant number to scale for each circle. After the
scaling process is completed the rectangle template is generated (fig.5c and d).

6. Feature extraction

The Ridge Energy Direction (RED) algorithm is used to extract features from the rectangle template.
Usually, the features extraction is converting rectangle iris template to binary representation [1]. The features
extraction of RED is based on the direction of the ridges that appear on rectangle iris template. The RED
algorithm applies two directional filters on the rectangle iris template (vertical and horizontal). Applying these
two directional filters on rectangle iris template will create two outputs for every pixel in rectangle template.
Depending on the output value both filters will tell the appearance of a strong ridge and is encoded with a single
bit to indicate the ridge direction in binary template. If the output value of the vertical filters is higher than the
output value of horizontal filter then 1 is store in location of center filter else 0 will store in location. A rectangle
binary template will generate after complete the RED algorithm contains the value that resulted from comparing
of two directional filters of the RED algorithm. This rectangle binary template will be used in the matching
process. Also, the rectangle binary template will masked with another template have the same size as rectangle
binary template. The mask template contains 1 which indicates the appearance of the ridge and 0 absences. This
step has already been built and tested with simulations showing a higher execution time, speedup efficiency
achieved by an FPGA compared to sequential process.

7. Hamming Distance

The template matching is process of comparing the current template with template that has already been
store in database until find one that matches in the database. Hamming distance (HD) is used to measure of how
close the two template to each other. The more the HD closes to zero the more the close of two templates to each
other. Highest closeness between matched templates is 0.32 as indicated by Daugman [8]

 (⨂)

 (1)

Where templates A is the Iris template captured image and Template B is the iris template from the
database and ⨂ symbol indicates the binary exclusive-or operator to detect disagreement between the bits that
represent the directions in the two templates, ∩ is the binary AND function, ║●║ is a summation, and mask A is
associated binary mask for captured image template and also mask B is associated binary mask for database.
The denominator ensures that only required valid bits are included in a calculation.

8. Results

The proposed algorithm of the iris recognition designed and implemented on FPGA and experimented on
various iris database (CASIA V1 & CASIA Interval). The algorithm is experiment on two type of process,
central processing unit (CPU) and parallel processing unit (PPU) and comparing the performance of the

(C)

(d) (b)

Fig. 4 : a) Architecture of normalization using BCA. b) Quarter iris region. c) Rectangle template that generated using BCA

before scaling process. d) Rectangular Iris generated after scaling process with height 45 pixel and width 240 pixel of the

quarter iris region.

http://dx.doi.org/10.17758/UR.U0915119 59

algorithm between them. The CPU that has been used to test iris algorithm is Intel(R) Core(TM) i5. The
processor is consist of two cores with 4 logic processor, 2.60GHz clock and 3230 MB cache. The full iris
recognition algorithm was performed under Windows 7 using the MATLAB 2013a software. While the PPU that
used to test the iris algorithm, was execute on Spartan 3AN boards. The Spartan 3AN board includes a
XC3S700AN FPGA chip with 50 MHz clock. The full iris recognition algorithm is designed and implemented
on the Spartan 3AN. The full algorithm is programmed on FPGA using VHDL. The Xilinx ISE suite 14.1 was
used to implemented our VHDL program. The Xilinx ISE suite 14.1, involved synthesis, simulation, and
programming environments. The execution time results and overall performance of iris recognition between the
CPU and FPGA shown in table 1. Xilinx ISE suit 14.1 for implementation of our VHDL program. The ISE suit
14.1 includes synthesis, simulation, and programming environments. The results of the execution time and
overall performance of iris recognition between the CPU an FPGA is shown in table 1. Table (1) shows the
execution time results of the iris recognition on two processor type (CPU and FPGA). It is clear in the table (1)
that the segmentation is most consumer time in CPU since segmentation was used the CHT, which is a technique
that consumed time to locate pupil and iris boundaries since CHT is brute force tries many pixel to locate the iris
in the captured image. The table (1) illustrates the acceleration performance and time excitation that achieved in
FPGA compared to the CPU. The results show that FPGA is much faster than the CPU. For example, the
optimized MATLAB version 2013a takes 6.51977 sec as average to complete segment iris while the FPGA takes
3.890 ms as average for segment iris. The main result of this research is to speed up of iris recognition and
implemented on a modest sized FPGA and gets higher speed results. In this paper we implemented two type of
iris recognition (segmentation and normalization) in FPGA and the other from iris recognition (features
extraction and matching) was implemented in different paper. The results in the table (1) show that
approximately 1676 and 1463 faster than the CPU process in performing the segmentation and normalization.
The architecture designed in fig (6, 7) in FPGA has major effect speed up the overall processes of iris. the
architecture in fig(6) shows that it generated 8 address location, loads these address ,perform parallel
accumulated and finally comparing with registers to get the results only one clock cycle while it needs many
clock cycle to perform these sequential processor. The other architecture in fig (7) shows how parallelized
normalization can loads the desired pixel form the captured image and stored in rectangle template only in one
clock cycle and then perfuming the scaling function to rectangle template to get fix size rectangle template. the
parallelized architecture of system in FPGA improved execution of normalization compared in sequential
processor as shown in table(1).

TABLE II: The execution time of iris recognition on CPU and FPGA.

Iris recognition system Optimized Matlab code on Intel ® CPU (ns) Spartan 3 AN XC3S700 (50 MHz)

Segmentation 6.51977 sec 3.890 m sec

Normalization 360.105 ms 246 micro sec

RED Algorithm (Digital filter) 64.011 ms 144 microsec

Hamming distance 7.7 ms 20 ns

Fig. 5: Simulation of segmentation using CHT on FPGA

http://dx.doi.org/10.17758/UR.U0915119 60

9. Conclusion

This paper shows parallelized of two part of iris recognition algorithm on FPGA. The parallelized in FPGA
for segmentation and normalization help to speed up the execution of iris recognition by approximately 1676 and
1463 faster than executing CPU process for segmentation and normalization respectively. The resized of
captured image helps to speed up the execution at least to quarter the time of execution and maintained the same
accuracy as well in segmentation process. Quarter of the iris is sufficient to identify between human. FPGA
allows making iris recognition system works in real time with low cost and higher speed and performance.

10. Reference

[1] R. W. Ives, R. P. Broussard, L. R. Kennell, R. N. Rakvic and D. M. Etter, "Iris Recognition using the Ridge Energy

Direction (RED) Algorithm," 42nd Asilomar Conference in Signals, Systems and Computers, 2008, Pacific Grove, CA,

2008.

http://dx.doi.org/10.1109/ACSSC.2008.5074610

[2] S. S. Omran and A. A. Al-Hilali, "Half Iris Matching Based On Red Algorithm," in First International Engineering

Conference (IEC2014), Erbil, 2014.

[3] S. S. Omran and A. A. Al-Hilali, "Half Iris versus Circular Iris Matching," in Proceedings of 2015 International

Conference on Image Processing, Production and Computer Science, Istanbul, 2015.

[4] S. S. Omran and A. A. Al-Hilali, "Quarter of Iris Region Recognition Using the RED Algorithm," in 17th UKSIM-

AMSS International Conference on Modelling and Simulation, Cambridge, 2015.

[5] J. Daugman, "How iris recognition works," IEEE Transactions on Circuits and Systems for Video Technology, vol. 14,

no. 1, pp. 21-30, 2004.

http://dx.doi.org/10.1109/TCSVT.2003.818350

[6] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions Pattern Analysis and Machine

Intelligence, Vols. PAMI-8, no. 6, pp. 679 - 698, 1986.

http://dx.doi.org/10.1109/TPAMI.1986.4767851

Fig. 6: Simulation of normalizations using BCA on FPGA

http://dx.doi.org/10.17758/UR.U0915119 61

http://dx.doi.org/10.1109/ACSSC.2008.5074610
http://dx.doi.org/10.1109/ACSSC.2008.5074610
http://dx.doi.org/10.1109/ACSSC.2008.5074610
http://dx.doi.org/10.1109/ACSSC.2008.5074610
http://dx.doi.org/10.1109/TCSVT.2003.818350
http://dx.doi.org/10.1109/TCSVT.2003.818350
http://dx.doi.org/10.1109/TCSVT.2003.818350
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851

[7] H. T. Ngo, R. N. Rakvic, R. P. Broussard and R. W. Ives, "Resource-Aware Architecture Design and Implementation

of Hough Transform for a Real-time Iris Boundary Detection System," , IEEE Transactions on Consumer Electronics,

vol. 60, no. 3, pp. 485 - 492, 2014.

http://dx.doi.org/10.1109/TCE.2014.6937334

[8] J. Daugman, "High confidence visual recognition of person by a set of statistical independence," IEEE Transaction on

Pattern Analysis and Machine Intelligence,, vol. 15, no. 11, pp. 1148-1161, November 1993.

http://dx.doi.org/10.1109/34.244676

http://dx.doi.org/10.17758/UR.U0915119 62

http://dx.doi.org/10.1109/TCE.2014.6937334
http://dx.doi.org/10.1109/TCE.2014.6937334
http://dx.doi.org/10.1109/TCE.2014.6937334
http://dx.doi.org/10.1109/TCE.2014.6937334
http://dx.doi.org/10.1109/34.244676
http://dx.doi.org/10.1109/34.244676
http://dx.doi.org/10.1109/34.244676

