
RTAP: Towards a Real-Time Auditory Periphery Simulation

Ram Kuber Singh

University of Western Sydney

Abstract: From rocket propulsion to monitoring intricate surgeries to mobile phones, a real-time software

application has wide applications for numerous fields as it provides a platform in providing information instantly.
It does this by breaking down a continuous stream of information into small manageable packets where they are

processed and output from the system. This paper describes the design of a real-time software application of the

auditory pathway using multiple threads and multi-core processor to achieve dynamic computational loads.

Small to large scale simulations are possible with such a computer model and therefore, it is a useful tool in

neuroscience and signal processing as part of expansions of hearing and audio processing researches

respectively.

Keywords: real-time, auditory, cochlear, simulation

1. Introduction

A real-time software application (RTSA) relies heavily on optimal access to the features of the central

processing unit (CPU). In doing so, the RTSA can be broken down to smaller parts called threads and every

thread is processed at fixed short durations. Given that most CPUs are capable of processing vast number of

clock cycles, multi-threaded processing in a serialized manner on a powerful CPU provides an outlook of

pseudo-concurrent processing. With the advent of multi-core processors, the attribute of concurrent parallel

processing can truly be achieved on readily available general purpose operating systems (GPOS) [1].

Real-time auditory periphery (RTAP) is one such RTSA that harnesses multiple-threading attributes of a

GPOS such as Microsoft Windows operating system (OS) and the parallel computing prowess of multi-core

processors on general purpose computers. It utilizes threads to encapsulate audio data acquisition, algorithm

processing and output display as well as data recording to attain real-time behaviour. In addition, RTAP also has

dynamic computational loading that is achievable with configurable parameters. These features will be discussed

in the following section.

2. Real-time Software Design

RTAP is a graphical user interface (GUI) Windows based application developed in C++ [2]. It utilizes JUCE

graphics and audio library and has been optimized to run on Intel processor with the use of Intel Parallel Studio

integrated into Microsoft Visual Studio. The sections below describe the major features of the application.

2.1. The Auditory Model

The algorithms of the auditory model are segmented based on the various stages of the auditory pathway as

illustrated in figure 1. The input and output (IO) stream for outer and middle ear (OME) modules consists of a

single channel as depicted by the thin arrow in figure 1. The OME module is made of a serial cascade of infinite

impulse response (IIR) based filters [3].

ISBN 978-93-84468-20-0

Proceedings of 2015 International Conference on Future Computational Technologies

(ICFCT'2015)

Singapore, March 29-30, 2015, pp. 54-60

http://dx.doi.org/10.17758/UR.U0315218 54

Fig. 1: Algorithm modules in RTAP.

From the basilar membrane (BM) onwards, the IO stream consists of multiple parallel channels. This

quantity selectivity is set before the simulation is started. Each parallel channel is limited by varying bandwidth

with a Gaussian function or bell-shaped frequency response. The peak of each bandwidth called best frequency

(BF) corresponds to the maximum response each discrete site of a BM is capable of generating. This feature of

the BM is implemented using a nonlinear gammatone filterbank, which comprises of a number of bandpass

filters with varying bandwidth and an exponential function to represent its inherent log-scaled nonlinearity [4].

Inner hair cells (IHC) are stationed along the length of the BM. The BM vibrations mechanically influence

the IHC corresponding to discrete sites of unique frequencies along the BM to vibrate as well. These nonlinear

motions cause the inflow and outflow of charged potassium ions to the IHC resulting in variations of voltages in

the IHC [5]. The voltage, in turn influences the rate of neurotransmitter release (NRR) from the base of the IHC,

which finally results in electrical spikes initiated from the auditory nerve (AN) [6]. This activity of the AN is

defined quantitatively as the AN spiking probability (ANSP) rate. Therefore, the mechanical travelling wave of

the BM corresponding to the specific BF and bandwidth is able to activate the firing of the associated AN spikes

based on the spectral contents of the streamed input audio.

2.2. Software Attributes

The software application is required to run in real-time on Windows which is a general purpose operating

system (GPOS). This can be achieved by altering the process priority of RTAP to run at either ‘Real-time’ or

‘High’ setting, thereby ensuring that the application receives as much central processing unit (CPU) time as

possible.

The audio is sampled at 22.05 KHz and is streamed continuously as a block of 1,280 samples with each

sample being 32-bit floating point (FP). The streamed audio is available at a deterministic time interval of 58ms

via JUCE audio library which provides an abstract of microphone audio streams available through the Windows

operating system (OS). A software sine wave generator is integrated into the audio data stream acquisition

function to utilize its regular 58ms timing intervals to provide a continuous sine tone based on the selectivity

feature.

Parallel processing is achieved using multiple threads coupled with features of Intel Parallel Studio. Each of

the three tasks namely algorithm, display and data recording are grouped into three separate threads that are able

to be invoked from the application. The algorithm thread encompasses the algorithm modules from figure 1. The

display thread projects output signals on to the computer screen. The record thread, which is an optional feature

triggered based on a separate setting, writes output signals on to a file. Figure 2 illustrates the RT characteristics

implemented using POSIX threads.

To ensure as many BF channels are included in the real-time (RT) processing, several schemes are utilized

for algorithm optimization and processing time reduction. One such scheme is the initialization phase before its

runtime. During this phase, memory resources are allocated, variables initialised and constants computed based

on the user defined parameter settings. Display and record threads are started in this phase and all its resources

are allocated before they are temporarily suspended in a wait mode. These two threads are put in a ready-to-run

state after the algorithm thread is processed. Hence, this initialization stage accommodates for the notorious

latency timings inherent in memory management as well as start-up of threads and removes computation

redundancy in variables that remain fixed during runtime.

Inner ear / cochlear Middle ear Outer ear

Outer ear

(Ear canal

audio

channeling -

Pascal) [3]

Tympanic

membrane

(Ear drum)

vibrations

(meters) [3]

Stapes

vibrations
(meters) [3]

Basilar

membrane

vibrations
(meters) [4]

Inner hair cell

mechanical-

to-electrical

transduction

(volts) [5]

Neuro-

transmitter

release rate
[6]

Auditory

nerve spiking

probability
rate [6]

http://dx.doi.org/10.17758/UR.U0315218 55

Fig. 2: Multiple threads implementation of RTAP.

2.3. Output Response Display

RTAP is capable of displaying parallel output signals processed from any one of the inner ear algorithm

modules described in section 2.1. As every BF is logarithmically spaced from one another, the output signals are

also spaced in a nonlinear manner on the y-axis. Displaying all output signals in constant intervals is made

possible with a Greenwood function [7]. A modified version of the Greenwood equation is implemented in

RTAP and is defined as follows:

spacing
BF

start Y
tyty

tyty
fYty 2

)()(

)()(
)100437.0(log4.21)(

minmax

max
10log

 (1)

ylog(t) is the y-coordinate representation of the response signal to be displayed on log scale. Ystart is the offset

from the point of origin of RTAP display window. yBF is the raw output of an algorithm module. ymax and ymin are

the maxima and minima for output signals in a single frame. Yspacing is the vertical distance between two adjacent

BF processed signals defined by equation 2 as follows:

1

BF

startend
spacing

n

YY
Y (2)

Yend and Ystart are the final and beginning vertical points on RTAP display window where the pixels are plotted

respectively. nBF represents the number of BF channels.

The modified Greenwood plot display is ideal for small number of BF channels. It becomes difficult to
comprehend contents of such a plot for large number of BF channels. A spectrogram becomes advantageous in

such a situation as it uses colours to differentiate intensity in the output signals as an added dimension and

provides a linear method of display by removing empty spaces in the y-axis. Therefore, every row in a
spectrogram represents a BF channel. The pixel colours are defined in the range of maxima and minima of

signals within all the BF channels in a single frame of 58ms. Equation 3 defines the colour index acquisition

format.

N
tyty

tyty
m BF

)()(

)()(

minmax

min

 (3)

m is the color index for a pixel in the spectrogram defined by output signal, yBF(t). N is the total number of

discrete colors set at a constant of 30.

To accommodate the display of output signals in real-time, image scroll is utilized where the output plot is

shifted on the computer screen from right to left. This is achieved by off-screen rendering of the image buffer

which ensures that a plot is drawn in its entirety before its display. Display data subsampling is also

implemented where every frame of display data are condensed before display. This is to ensure that as many

continuous frames of data are displayed on screen before scrolling off. This is achieved by retaining every one-

hundredth data sample within every signal of a BF channel. Figure 3 displays output signals from RTAP using

the modified Greenwood function and a spectrogram respectively with a 500Hz pure sine tone input.

Block of 1280 audio samples available

58ms

Display ()

Algorithm ()

Record ()

Algorithm () Thread 1

Thread 2

Thread 3

http://dx.doi.org/10.17758/UR.U0315218 56

Fig. 3: RTAP output (a) Modified Greenwood plot; (b) Spectrogram plot.

2.4. Software Optimization

Software optimization is achieved through utilization of fast mathematical operations. Basic mathematical

operators such as addition, subtraction, multiplication and division use either one or several CPU clock cycles

[8]. These operators are not considered for optimization. Only complex mathematical operators such as

exponential, natural log and sine and cosine functions are considered for optimization.

Sine and cosine functions are used only during the initialization stage for pre-setting variables based on

selectivity of parameters and thus are not time critical. Out of the remaining operators, exponential and natural

log functions, the former is utilized five times more per BF channel processing during RT runtime. Therefore,

the exponential function was given credence over natural log in terms of optimization. Table I summarises the

use of exponential and natural log functions during RT runtime.

An optimised exponential function is achieved using Schraudolph formula [9]. It is based on an 8-byte

floating point (FP) format divided into 2 integer halves. The upper half containing the sign, exponent and

mantissa bits are manipulated while the lower half is ignored. A bias of 1023 is added to the integer and shifted

to the left by 20-bits giving the result 2
y
. The result is divided by ln (2) and then read back as FP format to attain

e
y
. This is defined by equation 4 as follows:

)(: cbaxi (4)

i represents the integer-based manipulation of a FP number. x is the input number to be exponentiated. a is

the 20-bit left shifted scalar defined by 2
20

/ln(2). b is the 20-bit left-shifted bias 1023x2
20

. c is a fine-tuning

parameter.

TABLE I: Survey of exponential and natural log functions used in RTAP

Algorithm

Modules

Number of invocations

per BF channel
Maximum number of BF channels used

in simulation*

Total number of invocations in

simulation*

exp() log() exp() log()

BM 1 1 178 178 178

BM-to-IHC 3 1 125 375 125

BM-to-NRR 5 1 102 510 102

BM-to-ANSP 5 1 89 445 89

*Computer used is specified in figure 5.

http://dx.doi.org/10.17758/UR.U0315218 57

3. Results

Figure 4 displays the runtime attributes of the threads utilized in RTAP under debug mode for two frames of

audio input and a loading of 88 BF channels recorded by Intel thread checker as part of Intel Parallel and

Microsoft Visual Studios. The computer used is described in figure 5. The algorithm thread represented by

‘Algothread’ begins first followed by data record thread and finally pixel draw thread. After initializations, all

three threads are placed in wait mode where parameters are initialized and memory resources are managed.

The algorithm thread runs at 0.25s and 0.38s respectively after acquiring audio input. Upon its conclusion,

signals record and draw pixels threads are signalled to run and at approximately 0.35s and 0.47s, the two threads

are executed in parallel. The time duration of the algorithm thread exceeds 58ms because RTAP was compiled in

debug mode for acquiring runtime feedback data. However, the purpose of this test was to ensure threads

operational integrity is maintained during runtime and that they matched closely to its design.

Figure 4: RTAP thread utilization with 88 BF channels.

Figure 5 displays RTAP runtime load information based on its runtime priority on Windows OS, selected

algorithm and the number of parallel BF channels the software is capable of processing within a time cap of

58ms. The audio used is a 500Hz sine tone. The same figure also specifies the computer type used for attaining

the results.

Figures 5a and 5b indicate that running the BM algorithm on RTAP alone is able to produce optimum BF

channel loading under real-time priority. On the contrary, running BM-to-ANSP algorithm under normal priority

generates the least loading. This is because real-time priority allows RTAP to maximize the use of CPU

resources whereas normal priority allows RTAP to either share the CPU with other software application running

under the same priority or yield the CPU more often to higher priority applications. Furthermore, running ANSP

module requires the accumulative processing of BM, IHC and NRR algorithm modules. Therefore increasing

algorithm modules reduces BF channel loading.

Figure 5b illustrates higher BF channel loading across all algorithms and priority levels as a result of the

utilization of Schraudolph exponential function as opposed to conventional math C++ library usage as

demonstrated in figure 5a. Approximately 5% increase is observed for BM algorithm as opposed to IHC, NRR

and ANSP algorithm processing, which attained an increase loading of approximately 21%, 28% and 25%

respectively. As the BM algorithm does not encompass as many exponential functions as the other algorithms,

the improvement of increased BF channel loading is not as significant.

http://dx.doi.org/10.17758/UR.U0315218 58

Fig. 5: RTAP runtime load profile.

4. Conclusion and Future Work

RTAP, a real-time multi-threaded Windows application of the auditory pathway with dynamic loading has

been described. Due to its dynamic characteristics, the loading of multiple channels, priority-based CPU

allocation and algorithm selectivity can be variably set for other computers running different CPUs. It is able to

run multiple threads that are capable of harnessing parallel computing capability of a multi-core processor to

compute, display and store computed data to a file.

The dynamism of RTAP allows many features to be implemented for future releases. Breaking down

algorithm modules into smaller parts and encapsulating them in threads may achieve further optimization and

higher loading of channels. As there are a number of configurable parameters in this model, one potential feature

is to utilize scripts to load and save simulation configurations. The sine tone generator may be expanded to

include more input signals such as square and sawtooth.

5. References

[1] S. Akhter and J. Roberts, Multi-Core Programming: Increasing Performance through Software Multi-threading, 1st ed.

Intel Press, 2006, pp. 1–336.

[2] R. K. Singh, “Real-time Auditory Periphery (RTAP),” 2012. [Online]. Available:

https://code.google.com/p/rtap/source/list.

[3] E. A. Lopez-Poveda and R. Meddis, “A Human Nonlinear Cochlear Filterbank,” J. Acoust. Soc. Am., vol. 110, no. 6,

pp. 3107 – 3118, 2001.

http://dx.doi.org/10.1121/1.1416197
[4] R. Meddis, L. P. O’Mard, and E. A. Lopez-Poveda, “A Computational Algorithm for Computing Nonlinear Auditory

Frequency Selectivity,” J. Acoust. Soc. Am., vol. 109, no. 6, pp. 2852 – 2861, 2001.

http://dx.doi.org/10.1121/1.1370357

[5] C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis, “A Revised Model of the Inner-Hair Cell and

Auditory-Nerve Complex,” J. Acoust. Soc. Am., vol. 111, no. 5, pp. 2178 – 2188, 2002.

http://dx.doi.org/10.1121/1.1453451

[6] R. Meddis, “Auditory-nerve First-spike Latency and Auditory Absolute Threshold: A Computer Model,” J. Acoust.

Soc. Am., vol. 119, no. 1, pp. 406 – 417, 2006.

http://dx.doi.org/10.1121/1.2139628

[7] B. R. Glasberg and B. C. Moore, “Derivation of auditory filter shapes from notched-noise data.,” Hear. Res., vol. 47, no.

1–2, pp. 103–138, Aug. 1990.

http://dx.doi.org/10.1016/0378-5955(90)90170-T
[8] A. Fog, “4. Instruction tables - Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel,

AMD and VIA CPUs,” 2014.

http://dx.doi.org/10.17758/UR.U0315218 59

http://dx.doi.org/10.1121/1.1416197
http://dx.doi.org/10.1121/1.1416197
http://dx.doi.org/10.1121/1.1416197
http://dx.doi.org/10.1121/1.1370357
http://dx.doi.org/10.1121/1.1370357
http://dx.doi.org/10.1121/1.1370357
http://dx.doi.org/10.1121/1.1453451
http://dx.doi.org/10.1121/1.1453451
http://dx.doi.org/10.1121/1.1453451
http://dx.doi.org/10.1121/1.2139628
http://dx.doi.org/10.1121/1.2139628
http://dx.doi.org/10.1121/1.2139628
http://dx.doi.org/10.1016/0378-5955(90)90170-T
http://dx.doi.org/10.1016/0378-5955(90)90170-T
http://dx.doi.org/10.1016/0378-5955(90)90170-T

[9] N. N. Schraudolph, “A Fast, Compact Approximation of the Exponential Function,” Neural Comput., vol. 11, pp. 853–

862, 1999.

http://dx.doi.org/10.1162/089976699300016467

http://dx.doi.org/10.17758/UR.U0315218 60

http://dx.doi.org/10.1162/089976699300016467
http://dx.doi.org/10.1162/089976699300016467
http://dx.doi.org/10.1162/089976699300016467

